Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(22): e2221683120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216548

RESUMO

The triplet nature of the genetic code is considered a universal feature of known organisms. However, frequent stop codons at internal mRNA positions in Euplotes ciliates ultimately specify ribosomal frameshifting by one or two nucleotides depending on the context, thus posing a nontriplet feature of the genetic code of these organisms. Here, we sequenced transcriptomes of eight Euplotes species and assessed evolutionary patterns arising at frameshift sites. We show that frameshift sites are currently accumulating more rapidly by genetic drift than they are removed by weak selection. The time needed to reach the mutational equilibrium is several times longer than the age of Euplotes and is expected to occur after a several-fold increase in the frequency of frameshift sites. This suggests that Euplotes are at an early stage of the spread of frameshifting in expression of their genome. In addition, we find the net fitness burden of frameshift sites to be noncritical for the survival of Euplotes. Our results suggest that fundamental genome-wide changes such as a violation of the triplet character of genetic code can be introduced and maintained solely by neutral evolution.


Assuntos
Cilióforos , Euplotes , Euplotes/genética , Euplotes/metabolismo , Código Genético , Sequência de Bases , Códon de Terminação/genética , Códon de Terminação/metabolismo , Cilióforos/genética , Deriva Genética
2.
Nat Struct Mol Biol ; 24(1): 61-68, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27870834

RESUMO

The ribosome can change its reading frame during translation in a process known as programmed ribosomal frameshifting. These rare events are supported by complex mRNA signals. However, we found that the ciliates Euplotes crassus and Euplotes focardii exhibit widespread frameshifting at stop codons. 47 different codons preceding stop signals resulted in either +1 or +2 frameshifts, and +1 frameshifting at AAA was the most frequent. The frameshifts showed unusual plasticity and rapid evolution, and had little influence on translation rates. The proximity of a stop codon to the 3' mRNA end, rather than its occurrence or sequence context, appeared to designate termination. Thus, a 'stop codon' is not a sufficient signal for translation termination, and the default function of stop codons in Euplotes is frameshifting, whereas termination is specific to certain mRNA positions and probably requires additional factors.


Assuntos
Euplotes/genética , Transcriptoma , Sequência de Aminoácidos , Sequência de Bases , Euplotes/metabolismo , Mutação da Fase de Leitura , Terminação Traducional da Cadeia Peptídica , Proteoma/genética , Proteoma/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
3.
Mol Biol Evol ; 33(11): 2885-2889, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27501944

RESUMO

mRNA translation in many ciliates utilizes variant genetic codes where stop codons are reassigned to specify amino acids. To characterize the repertoire of ciliate genetic codes, we analyzed ciliate transcriptomes from marine environments. Using codon substitution frequencies in ciliate protein-coding genes and their orthologs, we inferred the genetic codes of 24 ciliate species. Nine did not match genetic code tables currently assigned by NCBI. Surprisingly, we identified a novel genetic code where all three standard stop codons (TAA, TAG, and TGA) specify amino acids in Condylostoma magnum We provide evidence suggesting that the functions of these codons in C. magnum depend on their location within mRNA. They are decoded as amino acids at internal positions, but specify translation termination when in close proximity to an mRNA 3' end. The frequency of stop codons in protein coding sequences of closely related Climacostomum virens suggests that it may represent a transitory state.


Assuntos
Cilióforos/genética , Códon de Terminação , Alveolados/genética , Sequência de Aminoácidos , Códon , Código Genético , Variação Genética/genética , Fases de Leitura Aberta , Fatores de Terminação de Peptídeos/genética , Biossíntese de Proteínas , Alinhamento de Sequência/métodos
4.
Nucleic Acids Res ; 42(Database issue): D859-64, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24185699

RESUMO

We describe the development of GWIPS-viz (http://gwips.ucc.ie), an online genome browser for viewing ribosome profiling data. Ribosome profiling (ribo-seq) is a recently developed technique that provides genome-wide information on protein synthesis (GWIPS) in vivo. It is based on the deep sequencing of ribosome-protected messenger RNA (mRNA) fragments, which allows the ribosome density along all mRNA transcripts present in the cell to be quantified. Since its inception, ribo-seq has been carried out in a number of eukaryotic and prokaryotic organisms. Owing to the increasing interest in ribo-seq, there is a pertinent demand for a dedicated ribo-seq genome browser. GWIPS-viz is based on The University of California Santa Cruz (UCSC) Genome Browser. Ribo-seq tracks, coupled with mRNA-seq tracks, are currently available for several genomes: human, mouse, zebrafish, nematode, yeast, bacteria (Escherichia coli K12, Bacillus subtilis), human cytomegalovirus and bacteriophage lambda. Our objective is to continue incorporating published ribo-seq data sets so that the wider community can readily view ribosome profiling information from multiple studies without the need to carry out computational processing.


Assuntos
Bases de Dados Genéticas , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Biossíntese de Proteínas , Análise de Sequência de RNA , Navegador , Animais , Humanos , Internet , Camundongos , RNA Mensageiro/química , Ribossomos/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...